<code id='4408D6B1C8'></code><style id='4408D6B1C8'></style>
    • <acronym id='4408D6B1C8'></acronym>
      <center id='4408D6B1C8'><center id='4408D6B1C8'><tfoot id='4408D6B1C8'></tfoot></center><abbr id='4408D6B1C8'><dir id='4408D6B1C8'><tfoot id='4408D6B1C8'></tfoot><noframes id='4408D6B1C8'>

    • <optgroup id='4408D6B1C8'><strike id='4408D6B1C8'><sup id='4408D6B1C8'></sup></strike><code id='4408D6B1C8'></code></optgroup>
        1. <b id='4408D6B1C8'><label id='4408D6B1C8'><select id='4408D6B1C8'><dt id='4408D6B1C8'><span id='4408D6B1C8'></span></dt></select></label></b><u id='4408D6B1C8'></u>
          <i id='4408D6B1C8'><strike id='4408D6B1C8'><tt id='4408D6B1C8'><pre id='4408D6B1C8'></pre></tt></strike></i>

          M/M

          发布于: 2026-02-13 15:40:24 分类: 榜单推荐 观看:
          M/M 视频主图

          It looks like you've typed "M/M", which in many contexts refers to a class of queuing modelsin operations research and performance evaluation 鈥?specifically the M/M/c queue.

          Here鈥檚 a brief explanation in case that's what you meant:

          M/M


          M/M

          馃搱 M/M Queue Basics

          M/M

          The notation comes from Kendall鈥檚 notationfor queuing systems:

          A / B / c

          where:

          • A= arrival process distribution
          • B= service process distribution
          • c= number of servers

          Mstands for Markovianor Memoryless, meaning:

          • Arrivals follow a Poisson process(exponential inter-arrival times).
          • Service times are exponentially distributed.

          So M/M/1is a single-server queue with Poisson arrivals and exponential service times.

          M/M/cis the multi-server version.


          馃搳 Key Properties of M/M/1

          • Arrival rate: (\lambda)
          • Service rate per server: (\mu)
          • Traffic intensity: (\rho = \lambda / \mu) (must be (< 1) for stability in M/M/1)

          Important formulas (steady state):

          • Probability of (n) jobs in system:

            [

            P_n = (1 - \rho) \rho^n

            ]

          • Average number in system:

            [

            L = \frac{rho}{1 - rho}

            ]

          • Average time in system (Little鈥檚 Law):

            [

            W = \frac{1}{mu - lambda}

            ]


          馃攣 Variants

          • M/M/c鈥?c identical servers
          • M/M/鈭?/strong>鈥?infinite servers (no queueing)
          • M/M/c/K鈥?finite capacity K (at most K jobs in system)
          • M/M/c/c鈥?loss system (Erlang-B, used in telephony)


          If you meant something else by "M/M"鈥?for example:

          • Male/Male(in fiction or romance genres)
          • Manuscript formatting(M/M = manuscript markup)
          • Mathematics(M/M = methods and materials)
          • Or something else 鈥?/li>

          Let me know and I can clarify further!

          ADMIT ONE

          M/M

          导演:

          主演: ,

          类型: 榜单推荐

          上映日期: 2026-02-13 15:40:24

          评分: 7.7/10 (IMDb)

          ROW

          1

          SEAT

          64